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Numerical simulations of freely decaying isotropic fluid turbulence were per-
formed at various Mach numbers (from 0.2 to 1.0) using known shock-capturing
Euler schemes (Jameson, TVD-MUSCL, ENO) often employed for aeronautical ap-
plications. The objective of these calculations was to evaluate the relevance of the
use of such schemes in the large-eddy simulation (LES) context. The potential of the
monotone integrated large-eddy simulation (MILES) approach was investigated by
carrying out computations without viscous diffusion terms. Although some known
physical trends were respected, it is found that the small scales of the simulated flow
suffer from high numerical damping. In a quasi-incompressible case, this numerical
dissipation is tentatively interpreted in terms of turbulent dissipation, yielding the
evaluation of equivalent Taylor micro-scales. The Reynolds numbers based on these
are found between 30 and 40, depending on the scheme and resolution (up)to 128
The numerical dissipation is also interpreted in terms of subgrid-scale dissipation in
a LES context, yielding equivalent Smagorinsky “constants” which do not level off
with time and which remain larger than the commonly accepted values of the classical
Smagorinsky constant. On the grounds of tests with either the Smagorinsky or a dy-
namic model, the addition of explicit subgrid-scale (SGS) models to shock-capturing
Euler codes is not recommendedg 1999 Academic Press
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1. INTRODUCTION

At the present time, the need for unsteady fluid turbulent computations in the trans
flow regime is clearly identified for future aeronautical applications, and the improven
of computational resources opens the way to large-eddy simulation (LES). However,
in the transonic Mach number regime the use of shock-capturing schemes is inevitabl
influence of their intrinsic numerical dissipation on LES computations must be investige
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Such schemes will be considered as suitable for LES if they satisfy one of the followi
conditions:

o their numerical dissipation is much lower than the physical subgrid-scale dissipat
(condition (C1))

e their numerical dissipation is able to mimic those of a subgrid-scale (SGS) mo
(condition (C2)).

These conditions correspond to the two approaches found in the literature. On the one f
recently Ghosal [1] showed that the numerical errors of a centered scheme, even of eic
order accuracy, can hide the contribution of a subgrid-scale model if a prefiltering techni
is not applied. In the same way, Kravchenko and Moin [2] showed that, for turbulent chan
flow, the truncation errors of second-order finite-difference simulations can exceed
magnitude of subgrid-scale terms. Moreover, for mixing-layer simulations with high-oro
compact schemes lacking shock-capturing properties, Vranaln[3] found it necessary
to prefilter the resolved variables so that no energy is left at the mesh scale, in a consis
way with the conclusions of [1].

On the other hand, intrinsically dissipative discontinuity-capturing Euler schemes rep
duce some trends of turbulence: let us mention the results of Kawamura and Kuwat
[4] in the incompressible regime and Porggral. [5] in compressible cases. This ap-
proach is usually referred to as MILES (monotone integrated large-eddy simulation) :
has been introduced by Boré al. [6], who claimed that the intrinsic dissipation of the
flux-corrected transport (FCT) algorithm can mimic the effects of a subgrid-scale moc
Some authors, like Furebst al. [7] in the incompressible regime, also include the vis-
cous terms of the Navier—Stokes equations. In all cases, the relevance of this conce
not fully established, and the motivation of the present paper is to provide additional
formation to clarify this point and to check if one of the two conditions (C1) or (C2) i
satisfied.

This paper is a follow-up of the work of Mossi [8], who challenged TVD-MUSCL anc
Jameson schemes to reproduce the incompressible Taylor—-Green vortex-decay pro
at finite Reynolds number, by comparisons with direct numerical simulations (DNS)
Brachetet al. [9]. In the present study, we moved to compressible isotropic turbulen
at zero molecular viscosity, with a wider set of schemes, namely, the Jameson schen
TVD-MUSCL scheme using the minmod limiter with two different compression factor:
and three schemes within the ENO family (ENO, WENO, MENO) (see Appendix A for
brief description of these).

The paper is organized as follows. In Section 2, the results obtained with these sche
at spatial resolutions 84and 128 in five test cases at different initial rms Mach numbers
(Mims=0.2,0.5, and 1.0) and compressibility factors £ 0 and 0.05; see Section 2 for def-
inition) are presented and compared. For the quasi-incompressiblé&tasexo) = (0.2, 0)
the results are compared with spectral incompressible LES and DN$&taidiind Lesieur
[10], Vincent and Meneguzzi [11], and She [12], so that equivalent Reynolds numb
based on the Taylor micro-scale can be worked out for each scheme and resolutiol
Section 3, a more precise evaluation of the built-in dissipation of these schemes is |
posed in terms of the “generalized Smagorinsky constant.” The relevance of this con
is checked by repeating certain simulations with two different subgrid-scale models (
Smagorinsky and the dynamic eddy-viscosity models). The general conclusionis then g
in Section 4.
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2. THE MILES APPROACH

The Euler equations are solved in their conservative form

ouU o9F oG 9H
— 4+ —4+—4+—=0, 1

ot Tax T ay * 9z @
wheret denotes time an¢k, y, z) the 3D Cartesian coordinates. For an ideal gas of speci
heat ratioy (y = 1.4 here, as in air), the state vectdrand the convective fluxds, G, and

H are defined as
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2
where(u, v, w) = U, p, p, and€ are respectively the velocity vector, density, pressure, a
total specific energy¥ = p/(p(y — 1)) + %uz. All initial conditions are at uniform density
po and temperatur®y, that we use to make the problem non-dimensional, together with 1
rms of the initial random velocity field. Consequently, the initial rms Mach numidgd)
arises naturally in the equation of state:

p T
—=—. (©)]

P yME,

The time integration is performed with a Runge—Kutta multi-stage technique while
convective fluxe§, G, H are discretized with some widely used shock-capturing schem
which are listed as follows and briefly presented in Appendix A:

e second-order accurate in space Jameson scheme using a four-stage Runge-
time marching technique;

o third-order accurate in space TVD-MUSCL scheme with the minmod limiter a
B =1 (the minmod limiter and the compression faggare defined in Appendix A.2) using
a four-stage Runge—Kutta time marching technique, denoted MUSCL1;

o third-order accurate in space TVD-MUSCL scheme with the minmod limiter a
B =4 using a four-stage Runge—Kutta time marching technique, denoted MUSCL4;

o third-order accurate in space ENO scheme using a three-stage Runge—Kutta
time marching technique [13];

o fourth-order accurate in space WENO scheme using a three-stage Runge-t
TVD time marching technique;

o fifth-order accurate in space MENO scheme using a three-stage Runge—Kutta
time marching technique.

Each order of accuracy mentioned above corresponds to the maximal order that each s
is able to reach in the smooth regions of the flow. Among these six numerical schemes
Jameson scheme is the only one which allows direct control of the numerical dissipe
by means of an artificial dissipation model. Here, the scalar dissipation model propose
Jamesoret al.[33] has been employed. The two coefficients controlling the artificial dis:
pationk @ andkx @ (see Eq. (21)) can be chosen as a function of the spatial configuration
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TABLE |
Key Parameters of the Different Cases

Case 1 Case 2 Case 3 Case 4 Case 5
Initial rms Mach number 0.2 0.5 0.5 1.0 1.0
Initial compressibility ratioy, 0 0 0.05 0 0.05

of the physical problem. Actually, for industrial computations, the former varies typical
between 1.0 and 2.0, while the second is in the range of 0.01 and 0.05. In all simulati
presented hera;® and«x® were set to 1.0 and 0.03, respectively. This choice is surel
neither the least dissipative one nor the best for the problem at hand, but it is widely u
for industrial flow calculations. A detailed analysis of the influence éf and«® with
several artificial dissipation models can be found in [8].

All simulations are performed in a cube of edge length 2ontaining either 64or
128® uniformly distributed grid points. The boundary conditions are periodic in the thre
directions. Helmholtz decomposition of the velocity vector can be performed efficiently
the spectral space. The compressible part of the velogitis defined and computed as
uf = [k - uc]k/k?, and the solenoidal part a&§ = uy — ug. The corresponding spectra are

2

1 1
El=3 D> A Ek=5 > | 4
k—1/2<|k|<k+1/2 k—1/2<|k|<k+1/2
and their corresponding energies are
E— / Eddk E.— / E.(k) dk. )
0 0

The compressibility ratig is then defined ag = E¢/E. Its initial valueyg is of importance,
as stressed in particular by Passot and Pouquet [14], Blaistdall [15], and Erlebacher
et al.[16].

In all the cases considered here, which are summarized in Table I, the initial veloc
fields have power-law spectrak?e2K*/k) with ko = 2. All simulations have been carried
out up tot = 10, which corresponds to 18 ~ 3 initial eddy-turnover times.

2.1. The Shock-Free AlImost Incompressible Case

Case 1 does not develop strong compressibility effects (for all schemmespains less
than 0.01). Itis therefore relevant to compare our results with the numerous studies of fr
decaying incompressible isotropic turbulence computations, in addition to the low-Ma
number results of Erlebachet al.[16]. Because the effective filter (both transfer function
and cut-off length scale) associated to MILES calculations remains unknown, results \
be compared directly with unfiltered DNS results.

The first aspect to be checked is the ability of the dissipative Euler schemes under inve
gationtorecover proper Navier—Stokes dynamics (instead of the equipartition-type soluti
produced by certain academic and even industrial codes). As explained in the monog
by Lesieur [17], the evolution at large (but finite) Reynolds numbers of freely decaying |
compressible isotropic turbulence decay follows essentially two distinct stages. During
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FIG. 1. Time history of enstrophy for test Case 1 {6gtid). ENO ———; WENO ----- ; MENO —--.--- ;
Jameson- -; MUSCL4 ————— sMUSCLL -----.

first stage, the viscous effects are negligible, the flow develops strongly anisotropic e\
(sheets rolling-up into worm-like vortices), and enstrophy increases dramatically du
vortex stretching. During the second stage, viscous diffusion plays an important role ir
dynamics and distorted dissipative structures are created; moreover, the enstrophy

Q= %(a?) = %uv x uf?) ()
reaches a maximum and decays. All statistics then become self-similar. In Eq. (6),
brackets(-) denote the statistical average on all mesh points.

The two stages can be recognized in Figs. 1 and 2, which show the time evolutio
enstrophy for the 64grid and the 128grid, respectively. Frorh= 0 to about 3, enstrophy
grows and small structures are generated; then, the numerical damping, which bec
strong for small scales, leads to a decrease of enstrophy. Comparing these figures wi
one sketched by Lesieur [17, Fig. VI-5, p. 153], one could note that the global evolutiol
the enstrophy is in agreement with the EDQNM (eddy-damped quasi-normal Markoy
approximation) predictions, which has also been confirmed by the previous tests or
Taylor-Green problem [8]. The enstrophy level increases with the resolution in the s
way as it would increase with the Reynolds number in Navier—Stokes computations (L
scaling exponents that will be considered later).

The EDQNM theory predicts that, at zero molecular viscosity, enstrophy blow-up occ
at the critical timei; ~ 5.9/ 2 (0)¥/2. At finite Reynolds number, enstrophy no longer blow
up, but exhibits a peak abaigt that would correspond to= 3.7 here. More precisely, DNS
results (see in particular Ref. [9] with Taylor—Green initial conditions) show that the pe
time decreases continuously when molecular viscosity increases, which can be used
indirect measure of an equivalent Reynolds number in our case. We are of course aw:
the fact that such equivalent Reynolds numbers are resolution dependent.

Figures 1 and 2 show that the peak time ranges from 2.5 for the MUSCL1 scheme witl
64° grid to 4.0 for the MENO scheme with the 12rid. On the coarse grid, the enstrophy
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FIG. 2. Time history of enstrophy for test Case 1 ($28id). ENO ——; WENO ----- ; MENO —----- ;

Jameson- -; MUSCL4 ————— .

of the MUSCL4 scheme begins to be larger than the one of the WENO scheme soon :
the enstrophy peak. This suggests that the WENO scheme is more diffusive at small sc
than the MUSCL4 one; whereas, when the spectrum is not completely filled, the WEI
scheme is less diffusive than the MUSCLA4 one. Since the differences between the sche
begin to be noticeable aftee=1, i.e., well beford., we suspect that numerical dissipation
affects not only the small scales but also the large ones. The MENO scheme preserve
largest amount of enstrophy until the end of the simulation. This suggests that it is the ¢
dissipative of all, which will be confirmed further on. After the MENO scheme, the ord
in terms of increasing dissipation is as follows: WENO, MUSCL4, Jameson, ENO, a
MUSCLL1. The latter scheme was found too dissipative at6é4ustify further testing (see
Fig. 1). It was checked that the use of the smoothness indicator of the WENO scheme g
in [18] produces the same results with a 3% relative error on enstrophy with respect to
one of [19] used in this study.

The time history of the total kinetic energy, presented in Figs. 3 and 4 for both grids, shc
that numerical diffusion acts earlier than the above enstrophy peak time, more visibly on
coarse grid, of course. At= 10, the rank between the schemes is identical for both grid
The Jameson scheme preserves the largest amount of energy, followed by the MUS
MENO, WENO, ENO, and MUSCL1 schemes. For the latter, the energy begins its de
sooner than the others, which is, again, evidence that the large scales of the flow si
from numerical diffusion. The time history of the energy decay shows that, until at le
t =3, the MENO scheme contains more energy than the other schemes. The kinetic en
is found to decrease &3* with @ ranging from 1.3 (MUSCL1) to 1.67 (MUSCLA4) on the
coarse grid and from 1.94 (ENO) to 2.18 (MUSCLA4) on the fine grid. For the latter gri
decay rates are greater than the values of 1.38 predicted by EDQNM and of 1.6 foun
spectral DNS [10]. Note that a ENO scheme on 2 @ad gives a slope of 1.2. Here, the
trend is an increase of when increasing the resolution. An explanation for this behavic
is that the wave number range to dissipate energy is broader in tRed@®utation than
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in 64° computations (this assumption will be discussed later on with the help of ot
statistics).

Another test of validity of the MILES approach is the analysis of the schemes abi
to producek—>/3 spectral sub-ranges in the self-similar decay stage. Looking at the
netic energy spectrum of Fig. 5 for the%drid at =10, no such sub-ranges are clearly
distinguishable. We will see in Section 3 that cledet’® sub-ranges are obtained at the

0.5

0.4

0.3

Illl[lllllllll

0.2

E(t)
T

NENINEENI NN NN FR SN A EE NN NN ENENE AN NNl RN

0 1 2 3 4 5 6 7 8 9 10
t
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same resolution with a fourth-order Euler centered scheme coupled to a Smagorinsky .
model.

A quite surprising behaviour is observed for the Jameson scheme, which does not ¢
any energy at the cut-off wave numbé&g & N /2, with N = 64 or 128): for both grids (see
Figs. 5 and 6), the spectra obtained with this scheme resemble more low-Reynolds-nur
DNS spectra (with a Kolmogorov wavenumiigr 18 at 128) than high-Reynolds-number
LES spectra. This behaviour depends on the artificial dissipation: indeed, with the less o
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FIG. 6. Kinetic energy spectrum for test Case 1tat 10 (128 grid). ENO ——; WENO ----- ; MENO
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used Jameson coefficient® =1.0 andx® =0.01, results close to MUSCL4 ones are
obtained, while even better results can be produced with matrix artificial dissipation mo
(see [8]). Nevertheless, the Jameson scheme better preserves energy in the large scale
is quite understandable if one accepts the above analogy: in this case, the pseudo diss
range abouky would inhibit all transfers acrods, yielding less energy dissipation in the
large scales than with the other schemes. As a result, the total kinetic energy (the integ
the spectrum) is larger with the Jameson scheme than with the other ones, as stated
On the 128 grid (see Fig. 6), all the other schemes exhibit a very skiott® sub-range,
between the wave numbers 5 and 15. But, transfers should be examined in order to prov
inertial behaviour can be reproduced with the MILES approach. Whatever the conclusic
such investigation, the condition (C2) is not verified since classical LES is able to proc
an inertial range up to the cut-off. Concerning the numerical scheme, one can notice
the MENO scheme yields more energy than the other ones at high wave numbers.

In DNS, the isotropic Taylor micro-scabe (see Figs. 7 and 8), defined as in dimez
et al.[20] by

22 50£0 E (k) dk :%’ @
Jo KEMKdk @

is consistent with the classical definitiondfsee, e.g., Hinze [21]), which is one-dimension:
and, in some sense, characteristic of the velocity gradients in the inertial range, when
is one. In Porteet al.[5], the same formula (up to the factor 5) was used as a measure of
resolved gradients in shock-capturing Euler simulation in the same spirit as the present
although one might object that the certainly crucial contribution of the subgrid-scales is
taken into account in this case. Note that the same problem arises in any LES, where tf
of Eq. (7) has nevertheless become customary. As inthe MILES results of &até?2, 5]
and the LES/DNS simulations of Erlebacle¢rl.[16], 2 keeps onincreasing at large times
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which is the expected behaviour. Furthermore, when the mesh size is reduced by ha
is divided by a factor of about 1.6 for all the schemes, suggesting that it scalésif
as expected from Kolmogorov’s law. The main goal of this paper being the comparat
assessment of the different schemes, the respective valueatdf=10 are summarized
in Table Il for both grids. On these grounds, MENO provides better results than MUSCIL
WENO, Jameson, ENO, and MUSCLL1. Note that the Taylor micro-scale increases with
resolution. Moreover a 3Zomputation with an ENO scheme gives a value o for the
Taylor micro-scale. This confirms that a higher resolution allows the numerical schen
to dissipate on a broader wave number range. Although this result seems to be coul
intuitive with respect to truncation analysis, it should be stressed that the finest grid use
our numerical computations is still far from the situation where the asymptotic behavic
for mesh size going to zero is expected.

Another way to investigate how realistic these inviscid simulations are is to look at t
resolved skewness tensor

au; \ o \?\ - .
(DA

wherei and j refer to theR? directions, as will be the case in the sequel of this pape

TABLE Il
Pseudo Taylor Micro-scale Values for All Schemes
and Both Grids (Case 1t=10,A =2x/N)

ENO WENO MENO Jameson MUSCL4 MUSCL1

64° 5.8A 5.0A 43A 5.4A 4.7A 7.4A
128 6.8A 59A 5.1A 6.2A 55A
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TABLE 11l
The Average of the Diagonal Components of the Resolved
Skewness Tensor at= 10 for Case 1

ENO WENO MENO Jameson MUSCL4
64° -0.32 -0.32 -0.33 —0.45 -0.36
128 -0.37 -0.36 -0.35 —0.46 -0.34

The typical values for the diagonal components of the “true” skewness tensor+€ath
in experimental grid turbulence [23] ardd.5 in the incompressible DNS of Vincent and
Meneguzzi[11], which agrees with theXafrid points compressible DNS of Erlebacleéal.
[16]. Initially, the skewness is close to zero, due to the Gaussian (random) initializat
A minimal requirement for the MILES approach would be a resolved skewness wt
becomes and remains negative. The averages of the diagonal compofEentsSK) are
given in Table Il att = 10 for the two grids. All the schemes tested are able to develoj
non-Gaussian behaviour but the values are relatively far from the aforementioned spect
experimental calculations. These schemes introduce more numerical errors than the s
ones usually used in theoretical turbulence studies. The results are close to the vdlU of
found by Vremaret al.[24] in 213 LES computations of decaying isotropic turbulence ¢
Mims= 0.05. Inspecting Table Il one may notice that, except for the MUSCL4 scheme,
absolute value of the diagonal part of the skewness tensor increases with the resolutior
Jameson scheme is closer to the accepted valu@ & than the other ones, which confirms
that its behaviour (with the standard set of coefficients) is closer to a low-Reynolds-nun
DNS than a high-Reynolds number LES.

Another minimal requirement for the schemes investigated here is to reproduce the |
mechanisms of turbulence like vortex stretching and the subsequent vortex tubes ¢
“worms,” discovered numerically by She (see in particular Ref. [12]; the discovery of |
sheets from which they result is due to [11]). Figures 9 and 10 show iso-surfaces of con
vorticity magnitude at = 10 for all the schemes on the 28nd 64 grids, respectively.
The value of the iso-surfaces is chosen to be a proportion of the rms vottiéty/2. For
the 128 grid, the threshold value i fixed so thatv’= 2.27(w?)?, while for the 64 grid
o is only 2(w?)Y/2. Itis remarkable that for all schemes this choice produces the best vis
impression, i.e., a compromise between the largest number of worms and the shar
of the visualizations. These schemes are seen to produce elongated vorticity structul
found in spectral DNS simulations. The worm diameter is a direct function of the resolut
and is about %\ for the Jameson scheme and3or the others.

Quantitative comparisons at=10 are shown in Fig. 11, where the probability densit
functions (pdfs) of velocity derivatives and pressure are plotted. Our data are compared
the data obtained by the incompressible DNS spectral computationetayd\vnd Lesieur
[10], Vincent and Meneguzzi [11], and She [12]. The pdf$afox anddou/ady exhibit a
non-Gaussian behaviour as expected from the results of the aforementioned authors
results are closest to those ofekdis and Lesieur aRe ~ 20 and of She aRg ~ 24.

In contrast, the pdfs of Vincent and MeneguzziRa, ~ 150 show larger tails than those
provided by the shock-capturing schemes.

Since in incompressible flows, the low pressure levels are well correlated with inte
vorticity, the pressure pdfs are strongly skewed toward the low values, as showetais M
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FIG. 9. Iso-surfaces of constant vorticity magnitudet at 10 for all schemes in the 12§rid, Case 1. ENO,
top left; WENO, top right; MENO, middle left; Jameson, middle right; MUSCLA4, bottom left.

and Lesieur [10], who found exponential distributions for the negative pressure fluctuatic
Looking at Fig. 11, one can observe that the shock-capturing schemes tested here
unable to reproduce the exponential “wings,” and rather exhibit a Gaussian behavi
A visualization of low pressure field of the WENO scheme on the’ 1281 (the other
schemes have the same behaviour) shows that pressure evolution is decorrelated fror
of the vortices (See Fig. 12). This conclusion was checked to be independent of the sele
pressure level. It may be added that the velocity pdfs have been found to be very clo
Gaussian for all schemes, as expected (see, e.g., [10]).

The general conclusion of this section is that the condition (C2) is not satisfied since
statistics dependent on the small scales are very much influenced by the numerical dam
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FIG. 10. Iso-surfaces of constant vorticity magnitude at10 for all schemes in the 84yrid, Case 1. ENO,
top left; WENO, top right; MENO, middle left; Jameson, middle right; MUSCL4, bottom left.

Moreover, the pdfs of the velocity derivatives exhibit a behaviour similar to a low Reyno
number DNS whereas the goal of the MILES approach is to emulate a LES result. Morec
the pressure pdfs are seen to be essentially Gaussian.

Nevertheless, some global features of the turbulence are recovered and if one only 1
a good representation of the large scales behaviour of the flow in turbulent applicati
computations with the ENO, WENO, MUSCL4, and MENO schemes may be conside
The Jameson scheme exhibits very strong numerical damping at small scales with tt
of artificial dissipation coefficients commonly used for transonic industrial applicatiol
However, it was found that for lower coefficients the small scale behaviour was simila
that of the other schemes.
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Vincent and Meneguzzi [11Re ~ 150)O.

The compression factor in the minmod limiter of the MUSCL scheme should be tunec
4 to reduce numerical dissipation. This provides better results with more energy in all
wave lengths. The robustness of the MUSCL4 scheme is sufficient for all the cases te
in this study.

The quasi-equivalence between the results obtained by MUSCL4, WENO, or MEN
despite their different formal order of spatial accuracy, suggests that the use of alarge mo
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FIG. 12. Iso-surfaces of pressure for the WENO schente-al0 (Case 1, 128grid).

stencil in ENO schemes is not optimal for the simulation of highly turbulent flows. Looki
at the small scale dissipation of these schemes, one can legitimately ask the question
relative influence of the numerical dissipation with respect to a subgrid-scale model
one may suspect that the condition (C1) is not respected too.

2.2. The Sonic Compressible Case

Case 5 (see Table I) is close to the one simulated with the piecewise parabolic me
(PPM) Euler scheme by Portet al. [5]. In their MILES calculations, performed with
Mims= 1.0 and xo = 0.068 at high resolution (5%2yrid points), they distinguished three
temporal phases: the “onset phase,” with the formation of shocks at its end, ranging 1
t =010 0.95 (the results of Portetal.are given in our time units multiplying by their time
scale); the supersonic phase with the development of strong density COOM@KIPmin)
with 0.95<t < 6.6; and a post-supersonic phase dominated by vortex interaction and
tical decay fott > 6.6. These phases can be recognized in Fig. 13, where the time evolu
of the density contrast is plotted for the MUSCL4 scheme on the finer mesh (the o
schemes have the same behaviour).

The first phase spreads over the time intervaltO< 1.0; the second, including shocks
interaction, expandsinthetimeintervadk t < 7.3; and the last, where the density contras
mean slope is low, occurs for- 7.3. These values are close to those found by Pettat.
and the physical trends are reproduced.

The time history of the energy decay is presented in Fig. 14 for the schemes consic
here on the 128grid and for the PPM computation of Porttral. During the first phase
(t < 1), there is close agreement between the different schemes. In the second phas
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FIG. 13. Time history of density contrast for the MUSCL4 scheme (Case 5 48).

PPM scheme preserves more energy than the other schemes, but during the third pha:
energy level is equivalent and the decay rates are very close.

Porteret al.explain that the time for compressional modes to develop fully is considerat
shorter than the time for solenoidal modes to develop through the energy cascade.
spectrum of compressional energy is saturatéd=at when the shocks start to form. The
time for solenoidal modes to develop is slower because it is linked with the eddy rotat
time of the energy containing scales. Looking at Fig. 15, which shows the solenoidal and
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FIG. 14. Time history of energy decay for the tested schemes compared with the PPM scheme @tRdrter
(Case 5, 128grid). ENO s WENO ----- ; PPMO; Jameson- -; MUSCL4 —————, .
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FIG. 15. Comparison between compressiblgk) ----- and solenoidaEs(k) —— kinetic energy spectra at
t =1 (Case 5, MUSCL4 scheme on £2gid).

compressible spectra g 1 for the MUSCL4 scheme on the 128rid, one can observe,
as these authors did, that the compressible modes contain more energy than the sole
ones for high wave numbers (here fos 15).

During the supersonic phase, compressional modes estaldighvalocity power spec-
trum as mentioned by Portet al. The kinetic energy spectra at tinhe=5 are given in
Fig. 16 on the 128mesh. All the simulations establistka? slope between the modes 5
and 15. The first scheme which diverges fromkhé slope is the ENO one.
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FIG.16. Compressible kinetic energy spectrunt at5 for Case 5, &2 slope is also represented (£28id).
ENO ——; WENO ----- ; Jameson -; MUSCL4 ————— .
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Finally, it was observed that some of the computations became unstable on the fi
mesh. This concerned the WENO scheme for test Case 4 and the MENO scheme fot
Cases 4 and 5. In these cases, the local Mach number became as high as 3. Moreover,
schemes were likely to encounter difficulties in selecting a smooth stencil, probably wt
some strong gradients are present on all the possible stencils.

2.3. Influence of the Mach Number and of the Compressibility

The time evolution of the parametgrfor the five test cases is plotted in Fig. 17 for
the ENO scheme on the finest mesh. Cases 3, 4, and 5 possess about 10% of compre
energy at = 10. One can observe that, despite the incompressible initialization of Case
the value ofy is of the same order as for Case 5 just after 0.4 time units. For the shock-fi
case,y is lower than 0.01 but, as in Case 2, this value seems to increaseeZah{25]
have mentioned that slightly increases whepy is less than 0.5.

In Fig. 18, which shows the time history of the rms dengiys for the five test cases,
the density fluctuations are directly correlated with the initial Mach number as was a
shown in [25]: the rms density increases with the Mach number. Comparing the initia
incompressible cases with the ones containing compressible modes, one can notice t
non-zero value ofg involves a higher value gdms than the one obtained witfpy = 0. Itis
shown in Fig. 19 that the density contrast can be higher in Case 4 than in Case 5. It ma
more physical to initialize the flow with a non-zero valug@fwhen the rms Mach number
is set to 1. However, this observation is not valid for Cases 2 and 3.

For the next comparison, the result of Case 5 could be easily extended to Case 4
expected, the results of thd,,s=0.5 cases stand between Cases 1 and 5 though t
dynamics of these flows seem to be mostly incompressible.
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FIG. 17. Time history ofx for the ENO scheme (12&rid). Case 1 ——; Case 2 ----- ; Case -3----;

Case4.-;Case 5 ————— .
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3. EVALUATION OF THE BUILT-IN DISSIPATION

3.1. Measurement of the Numerical Diffusion

In the previous section, we showed that the nature of the schemes and their respe
accuracies deeply affect the solutions. In particular, we recall that the Jameson scl
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FIG. 19. Time history of density contrast for the ENO scheme £188d). Case 1 ——; Case 2 ----- ;

Case 3 —------ ;Case4 .., Case5————— .
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(with the standard coefficients) yields low-Reynolds-number-type behaviour, whereas
dissipation of the others (except MUSCL1) rather acts as a SGS model. To be more pre
a measurement of the numerical diffusion has to be defined.

One way to measure the numerical diffusion is to compare the MILES results wi
theoretical results or with results from direct numerical simulation, as it was done by Mo
[8] for the Taylor—Green vortex-decay problem.

In [8], the dynamics of the viscous Taylor—Green flow was investigated with the Jame:
and the MUSCL4 schemes on‘hd 128 grid point meshes without any molecular or SGS
diffusion. The results were then compared with the viscous ones obtained by Bzaahet
[9] who used a full spectral DNS on a 256rid. The inviscid MUSCLA4 results on the 128
grid and those computed with the Jameson scheme on thgrigdare in good agreement
with those by Brachett al. at respectivelf\Re= 800 andRe= 200. The numerical diffusion
is then easily quantified in terms of an effective Reynolds number equivalent to the diffus
of the scheme.

In the same way, the comparison of velocity-gradients pdfs done in the previous sec
can give, via a Reynolds numbBe, based on the Taylor micro-scale, an estimate of th
importance of the numerical diffusion.

These methods provide only a global value of the numerical diffusion. However,
compare the numerical diffusion with the SGS one, a local measurement of the forme
needed. The numerical diffusienym, which is strongly linked to the leading terms of the
truncation errors, is interpreted as the difference between the convection terms in momer
equation given by the shock-capturirgg)(schemes and the ones given by a refereref@ (
centered scheme on the same flow field. These two terms are generated by taking a no
the respectively discretized convective fluxg$ and " where, in the continuous case,
they are expressed as

Fij = puiuj + &j p.

The centered reference fluxrjEf is chosen in such a way thai-“i'J-Ef||+l/2 - ]-‘irjefh_l/z)/A
is one order more accurate thaR ) .12 — Fli-1/2)/A, whereF 1412 and F1/2
denote the fluxes evaluated at the right interface of tbell. Giving enym the form of an
energy dissipation rate, we define

0
Enum = <Ui a (;,_—is_c - }—ir'Ef) > > (9)

where the Einstein summation convention applies to repeated indices as in the sequ
this paper. In the finite volume approach, the application of the Gauss theorem allows u
compute directly the divergence of the convective fluxes. Therefore, Eq. (9) becomes

Enum = <\:I/.ui(QiSC - Qiref) >a (10)

whereQf°=V (3/9x;)F;°andV is the cell volume; for exampl&Q“is given by Egs. (22)
and (23) for the MUSCL scheme. For the Jameson scheme, the difference of the
convective fluxes is reduced to the artificial dissipatipras described in Eq. (19), namely

Enum = <\]/-Ui Di>- (11)
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TABLE IV
Re, Values att=10 for Case 1

ENO WENO MENO Jameson MUSCL4
643 27.4 30.6 335 30.9 31.6
128 35.7 41.3 46.1 37.0 40.2

Now that a measure of the numerical diffusion is defined, it is possible to build an equiva
Reynolds number based upon the pseudo Taylor micro-séaieduced in Subsection 2.1,

15(p)(2/3E)%?
Rg = 12220 12
Enumh ( )
The values oReg, for Case 1 are summarized in Table IV for both grids-at10.

As expectedRe, increases with the resolution. As we already mentioned when looking
the velocity derivatives pdfs, tHee, was estimated to be about 25. It is then remarkable tt
this estimate is of the same order as the one computed with our measurement of num
diffusion.

3.2. Spectral Distribution of the Numerical Errors

The numerical dissipatios,,m measures a norm of the numerical error, but it does n
provide any information about the spectral distribution of this error. To get this informatit
the modulus of the transfer functidh, (k) for the convective fluxe$, Gn, andHy, is
computed for each shock-capturing scheme as

2
(1/2) Yk 1/2ki<ks1/2 |FFT(0Fsc/0x 4+ 0GSS/dy + dHS/9zZ) |

Tm(K) = : . . ,
m (1/2) Y12 )=ks1/2 l1 KL FFT(Fm) + ike FFT(G) + iks FFT(Hp)[2

(13)

where FFT( ) denotes the fast Fourier transform and fn < 5. Thetransfer functior?y, (k)
corresponds to the ratio between the Fourier transform of the divergence of the conve
fluxes computed with the shock-capturing scherRgg G:¢, and H3%, and the Fourier
spectral divergence of the fluxes constructed with the state vectas defined in Eq. (2).
The modulus of the transfer function is computed here instead of the usual transfer fun
because our interest focuses only on the dissipative behaviour of the schemes and 1
the dispersive errors.

The modulus of the transfer functida(k), corresponding to the componést = pu, is
given in Fig. 20 for the Case 1 on the £2@id att = 10. Results fof/3(k) andZ4(k) (not
shown here) are very close to the previous ones because of the isotropy of the flow. (
ously, numerical damping leads to a decreasgq@k). Cut-off wave numbers, defined here
as the smallest wave number for whigh(k) < 0.9, could be deduced from Fig. 20. These
wave numbers are evaluated to be about 27 for the MENO and WENO schemes, 18 fc
ENO and MUSCL4 schemes, and 14 for the Jameson one. Unfortunately(kyy cut-off
wave numbers are found at lower values thanZgk), as shown in Fig. 21. The cut-off
wave number of the MENO scheme remains around 27, but the one of the Jameson sc
decreasesto about 7. This demonstrates that a unique cut-off wave number cannot be d
for a given shock-capturing scheme when dealing with a non-linear system of conserv:
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FIG. 20. Transfer functionZ;(k) (Case 1, 128grid, t =10). ENO ——; WENO ----- ; MENO ------- ;

Jameson. -; MUSCL4 ————— .

laws. As a consequence itis impossible to define a unique filter length fora MILES compt
tion on the contrary of a classical LES, which does not satisfy the condition (C2). Moreov
the decay slopes @f (k) are much larger than the onesBftk), whatever the scheme. Next,
one notices the surprising behaviour of the WENO scheme which exhibifgdorvalues
slightly larger than one between wave numbers 11 and 21. Finally, for all schemes i
observed that the evolution &f(k) (not shown here) is close to the oneBf(k).
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FIG. 21. Transfer functionZ; (k) (Case 1, 128grid, t =10). ENO ——; WENO ----- ; MENO —----- ;

Jameson. -; MUSCL4 ————— .
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From this spectral analysis, the ranking between the schemes is consistent with the r
previously observed in the kinetic energy spectra (Fig. 6) except for the ENO scheme w
exhibits better results than the MUSCL4 scheme. However, despite the same ord
accuracy of both schemes, this contrast may be explained by the inconvenient use ¢
slope limiter by the MUSCL4 scheme, even at low local Mach number.

For all schemes, we observe that the modulus of the transfer functions is smaller
one-third for high wave numbers, leading to a non-physical behaviour of these modes

3.3. Generalized Smagorinsky Constant

From a LES point of view, the numerical diffusion is supposed to be quantified w
respect to the SGS one. In this way, the concept of a “generalized Smagorinsky cons
is introduced. The subgrid energy dissipation rate is defined as

gsgs = (pU; 0} Tij (U)), (14)

wheret;; is the subgrid-scale stress tensor expressed in Eq. (40). Here, it is evaluate
means of the Smagorinsky eddy-viscosity model [26] deprived of its constant,

Tij (U) = vsgsSj (U), (15)
with
vsgs= AZS(U)|  and  |SW)|* = 2S;W)S; (), (16)

whereS; (u) = %(aj u; + 9 u;) and, following Deardorff [27]A is related to the mesh size.
The strain rate tens@; (u) is discretized by means of a second-order centered approxir
tion, which is quite acceptable in the absence of sharp gradients (from now on, only Ce
is considered).

The “generalized Smagorinsky constant” (hereafter callgjlis defined as

Cgs = Snum/&‘?sgs (17)

It corresponds to the value that would take the Smagorinsky constant if the role of ¢
diffusion were played by the numerical damping. For example, a val@#qual to the

classical Smagorinsky constafls) means that the numerical diffusion of the scheme h:
the same intensity as that of the Smagorinsky SGS model. Note that the theoretical \
of Cs for freely decaying turbulence is 0.18 [28], but Deardorff [29] proposed to use 0.2
Figs. 22 and 23, the time evolution Gfs is given for Case 1. First, a transient phase can |
distinguished associated to a fast increageg@fThis growth of the numerical dissipation is
induced by the filling of high frequency modes due to the non-linear energy cascade pro
Both enum andesgsfollow an enstrophy-like evolution. But at the initial timgum is clearly

weaker tharzsys because the flow only contains large structures which are not effectec
the numerical damping whereas the existing gradients impose a non-zero SGS dissip
Up to about = 2, Cysincreases quickly (with the filling of the energy spectrum) and late
the ratioenum/esgs takes a smaller slope. The asymptotic state corresponds to a situa
where the decay rate ofysis faster than the one ef,m. The expected self-similar regime
is therefore never really reached with the schemes under investigation. Nevertheless
does not affect the relevance Gfs, which remains much larger thas. Therefore we
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FIG. 22. Time history ofCys (Case 1, 62 grid). ENO ——; WENO ----- ; MENO —--.-.- ; Jameson - -;
MUSCL4————— sMUSCL1 ------,

can conclude that all schemes considered overdissipate with respect to the Smagors
model, with a ratio between 2.5 and 9 times, depending on the schemes. This does
seem to depend much on resolution. More precisgly,is slightly larger with the 128

grid than with the 62 one. Moreover, the value & is reached a long time before the
enstrophy peak for all schemes. Nevertheless, one can notice that the fifth-order acci
MENO scheme is the least dissipative scheme tested in this study. Itis followed, ordere
increasing dissipation, by the MUSCL4, WENO, Jameson, ENO, and MUSCL1 schen

0.7

0.6

0.5

0.4

C,1)

0.3

0.2

\.zlIIlllllllllllllll|lll||lll

©
=

hY
- o

s e b b T b b aa e en bonwa bunes
1 2 3 4 5 6 7 8 9 10
I3

(=2
CrxTTT

FIG. 23. Time history ofCgs (Case 1, 128grid). ENO ——; WENO ----- ; MENO —----- ; Jameson- -;
MUSCL4 ————— .
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The third-order MUSCL1 scheme is much more dissipative than the others, as is shov
Fig. 22.

From these results, it appears that the condition (C1) is not fulfilled singe> esgs It
then can be assumed that the numerical diffusion would mask the effect of the subgrid-
model in computations where the shock-capturing schemes are coupled with SGS mo

3.4. Computations with Subgrid Models

Several computations of the shock-capturing schemes coupled with two different ¢
models have been carried out for the shock-free Case 1. The SGS models used in this
are the Smagorinsky and the dynamic eddy-viscosity models, which are both present
Appendix B.

To compare the MILES concept with classical LES computations, the SGS models
coupled with a fourth-order accurate centered spatial scheme. The spatial scheme
discretized form of a skew-symmetric formulation of the convection terms, chosen to rec
the aliasing errors, as proven by Blaisdetlal. [30]. The three-stage Runge—Kutta TVD
scheme is then applied to perform the time integration. This analysis is restricted to Ce
because SGS models alone are devoid of the shock-capturing ability. The skew-symn
centered scheme plus the Smagorinsky SGS model is called the S4-SMA scheme
the skew-symmetric centered scheme plus the dynamic eddy-viscosity model is calle
S4-DYN scheme.

The kinetic energy spectra of the MENO, S4-SMA, and S4-DYN schemes are represe
att =10 in Fig. 24 for the 6% grid. As expected, the S4-SMA scheme (WZh=0.2)
achieves a-5/3 slope, whereas the S4-DYN scheme provides a slope slightly smaller t
the theoretical one. The square root of the dynamic constant takes the asymptotic val
0.177 as can be observed in Fig. 25 which shows the time hista®y/bfon the 64 grid.
This value is very close to the theoretical value of 0.18. On the contrary, the behaviour fo
small scales of the least dissipative shock-capturing scheme tested here (MENO) is far
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FIG. 24. Kinetic energy spectrum at= 10 (Case 1, 64grid). MENO ——; S4-SMA ----- ; S4-DYN —------ .
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FIG. 25. Time history of square root of the dynamic constant for the S4-DYN scheme (Casedrid4

being an efficient subgrid model. In the same way, the time history of enstrophy for the
three simulations is represented in Fig. 26. The enstrophy level is about one-half times Ic
for the MENO scheme than for the S4-DYN one. As it appears from Fig. 24, the dynan
eddy-viscosity model is less dissipative than the Smagorinsky at small scales. The Ta
micro-scale values are equal to 2%n the 64 grid for the schemes S4-SMA and S4-DYN
at the end of the simulation. These values can be compared with the valuerobhtained
with the MENO scheme on the same grid (see Table II). The conclusion of the compari
between MILES and conventional LES computations is not in favour of the MILES concej
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FIG. 26. Time history of enstrophy for the schemes MENO, S4-SMA, S4-DYN (Case 1,g6dl).
MENO ——; S4-SMA -----; S4-DYN —--.-.- )
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FIG. 27. Time history of energy decay (Case 1, 188id). MUSCL4 ——; MUSCL4+ Smagorinsky ----- ;
MUSCL4 + dynamic model ------- .

To analyse the effects of a SGS model, the time evolution of the total energy for
MUSCL4 scheme with and without SGS model on the31@&d is shown in Fig. 27. For
t > 7, the energy level of shock-capturing schemes becomes higher with subgrid model
without. Note that the observations are the same whatever the mesh or the scheme u

Figure 28 shows the time history of enstrophy on the*1f##&1 for the MUSCL4 scheme
with and without models. The subgrid models are seen to add some small scales dan
The kinetic energy spectrum is plottedtat 10 in Fig. 29 for the 128grid. This plot
confirms that SGS models provide an additional small scales damping. On the contran
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FIG. 28. Time history of enstrophy (Case 1, £2@id). MUSCL4 ——; MUSCL4+ Smagorinsky ----- ;
MUSCL4 + dynamic model ------- .
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FIG. 29. Kinetic energy spectrum at= 10 (Case 1, 128grid). MUSCL4 ———; MUSCL4+ Smagorinsky
————— ; MUSCL4 + dynamic model -------.

large scales become larger with the SGS models than without. Finally, as seen in Fig.
the integral ofE (k) is larger with a model than without.

In fact, the mechanism is the same as for the Jameson scheme in Euler computatior
additional dissipation provided by the SGS models damps the small scales and prevent
energy transfer from low wave numbers to high ones from occurring. Energy is blockec
small waves numbers where the damping is weak.

The pdfs ofdu/oy att =10 are plotted in Fig. 30 for the WENO scheme with and
without a model on the 128yrid. The results are quasi-identical for significant values o
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FIG. 30. Probability density function obu/dy att =10 (Case 1, 128grid). WENO ——; WENO+
Smagorinsky ----- ; WENGt dynamic model - -.
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TABLE V
Taylor Micro-scale Values for All the Schemes with the Smagorinsky and the
Dynamic Eddy-Viscosity Models (Case 1t =10)

ENO+ WENO+ MENO + Jamesor- MUSCL4+
Smagorinsky Smagorinsky Smagorinsky Smagorinsky Smagorinsky
7.0A 6.3A 55A 6.5A 59A
ENO+ WENO+ MENO + Jamesor- MUSCL4+
dynamic dynamic dynamic dynamic dynamic
6.9A 6.1A 5.3A 6.4A 5.7A

the probability. However, for positive values @di/dy, the wings are slightly smaller with
SGS model than without confirming the previous results. The same comments are vali
the other schemes.

The Taylor micro-scale values are given for the 3@&sh at =10 in Table V.

Comparing with Table Il, one notices that the Taylor micro-scale increases when ¢
models are added to the shock-capturing schemes.

The time history of th&Cys is represented in Fig. 31 for the MUSCL4 scheme with ar
without SGS models (128grid). The values of th€ys are slightly smaller with a model
than without. In fact, both overall levels afym andesgsdecrease, but the smoother turbuler
field favours the decrease &f;m.

Since the numerical diffusion of the shock-capturing schemes is larger than the diffu:
of the SGS models, we can expect the cons@nof the dynamic eddy-viscosity model
to adapt itself to a weak value. The time history(r:ﬂf/2 for all the schemes is shown in
Fig. 32 on the 62 grid. The asymptotic value a[f,j/z is about 0.13 for each scheme usec
We observe that the constant decreases from about 0.18 when a centered scheme is
0.13 when a shock-capturing scheme is used. This means that the dynamic constant :

0.4

0 o bev e ber by rrn by v e e breen b

0 1 2 3 4 5 6 7 8 9 10
t

FIG. 31. Time evolution ofCgs (Case 1, 128grid). MUSCL4 ——; MUSCL4+ Smagorinsky ----- ;
MUSCL4 + dynamic model ------- .
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FIG. 32. Time history odel/2 when the dynamic model is added to the following shock-capturing scheme
(Case 1, 62grid). ENO ——; WENO ----- ; MENO —--.-.- ; Jameson- -; MUSCL4 ————— .

itself to the dissipation of the schemes, in accordance with the conclusion of Najjar
Tafti [31].

Moreover, since the Jameson scheme prevents the energy to reach the small scale
could expect the dynamic constant to be very weak. Unfortunately, this constant ta
nearly the same value whatever the scheme used. This means that the teGt (Bker
Appendix B.2) used here is more sensitive to the large scales than expected. A study &
the influence of the test filter upon LES computations can be found in Sagaut and Grot
[32]. A sharper expression ¢f gives a lower value o@j/z for all schemes but does allow
us to differentiate fully the Jameson scheme from the other ones. Nevertheless, one
notice on the enlargement in Fig. 32 that the more diffusive schemes admit a lower ve

of Cj/z than the less diffusive ones.

4. CONCLUSION

The intrinsic dissipation of six shock-capturing Euler schemes has been investigate
the case of freely decaying isotropic turbulence simulation with and without SGS model
different rms Mach numbers, compression factors, and resolutions. The general conclu
of this study is that neither the condition (CE}n < esg9 nor the condition (C2)gnum
mimicsesgd is fulfilled by the selected schemes. The MILES approach is able to reprodt
few aspects of the fluid turbulence: the worm-like vortices are observed and evidence
k=53 sub-ranges seems to exist if the resolution is sufficient.

However, a large part of the flow suffers from strong numerical damping. This dampi
affects every structure defined on less than 5 grid points for all schemes, even in shock:
cases. Moreover, pressure evolution is decorrelated from one of the vortices.

The ENO, WENO, MENO, and MUSCL4 schemes let some energy reach the cut-
wavenumber and preserve the flow from energy accumulation at small scales: in this se
they behave like a (very dissipative) SGS model. For the Jameson scheme, the influs
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of the artificial dissipation is strong: if the set of constants frequently used for indust
transonic computations is retained, a strong damping acting as a cut-off filter app
Moreover, if a lower artificial dissipation could generate turbulence fields like the ot
schemes, the same dissipation would probably be insufficient for a LES of a trans
industrial case.

A new measurement of the numerical damping has been introduced in terms of
“generalized Smagorinsky constan€Cg). This quantity shows that numerical diffusion is
considerably larger than the SGS one. The con§lgytan be seen as a new tool to evaluat
the numerical schemes in a LES context.

Another important finding is that the addition of a SGS model to the shock-captur
schemes tested in this study is unnecessary and inconvenient. The LES in the tran
regime remains an open problem and improvement of shock-capturing strategies is
essary. Higher-order accurate schemes can be employed, but their computational co
complexity may prevent their use for industrial applications. Another possibility may
the development of a sensor able to distinguish a turbulent fluctuation from a shock.

A. APPENDIX: SHOCK-CAPTURING SCHEMES

A.1. Jameson Multi-stage Scheme

The numerical scheme developed by Jamestoal. [33] to solve the Euler equations
applies a Runge—Kutta multi-stage (here a four-stage) time integration to the second-
central discretization of the flux balance. Additional dissipation terms are, however, requ
to capture discontinuities properly and to damp high-frequency oscillations, which
permitted by the scheme.

The Euler equations in conservative form Eq. (1) are here integrated using the f
volume method over a bounded control c@il;  of volumeV; ;  [34]. After the addition
of the dissipative termB; j , the following discretized equation results,

d
a(vi,j,kui,j,k)‘f‘Qi,j,k_Di,j,k =0, (18)

whereU; ; , attached to the cell center, is an approximation to the average valliowr
Qi jx andQ; j « is the vector of the net flux leaving and enterifg; . The dissipation
terms are computed, analogous to the discretization of the convective fluxes, as

Dijk=0di 1k —ditjk+dijiin—dij1ut+dijees—dijx 1. (19)
The dissipative ﬂu>di_%,j‘k in | -direction at the cell side— % j, k is made proportional
to the second- and fourth-order differences of the state vector multiplied by a scalar sc
factorr and a weight:
3]
di_%,j,k =h_1jk Ei—%,j,k(ui*j'k = Uik

=M1k ‘9i(i)%,j,k(ui+l,i,k —3Uijk+3Vi—1jk —VUizj.  (20)

The scaling factor is determined by the spectral radius of the Jacobian matrix for the invi
flux across the cell face and is formulated according to Jametsaln[33]. The directional



304 GARNIER ET AL.

version of the scaling factor proposed by Martinelli [35] has been tested and then abandc
because it was too dissipative; instead, a matrix version as proposed by Swansonand T
[36] has been successfully tested in [8] but not included here.

The second- and fourth-order coefficientd and® are used to adapt locally the
dissipative fluxes. They are defined as

Ei(i)%,j,k =«®y_ 15 and Ei(i)%,j,k = max(0, k¥ — 8:?;,j,k)’ (21)
wherex @ and«® are two constants the typical values of which are between 1.0 and 2
for k@ and between 0.01 and 0.05 fof?. Here,x® has been fixed equal to 1.0 and
«® equal to 0.03. Simulations with other values have been done but will not be discus
here. We just point out that, in the test Cases 1 and 5, results performed®Vith1.0 and
«® =0.01 are very close to the MUSCL4 ones.

The weightvi_1/2 j k, usually referred to as a switch, is formed using the absolute valt
of the normalized second-order derivative of the pressure field. For-theection, this
difference can be written as

Pi+1jk — 2Pijk + Pi-1jk
Pitsjk + 2Pijk+ Pi1jk|

Wik =

The switch is then given by
Vit jk = Max(Wiogjk Wik

The fourth-order dissipation is automatically switched off in the vicinity of a discontinuity
where the second-order dissipation is large.

A.2. Roe-TVD Schemes

A third-order total variation diminishing (TVD) version of the Roe scheme [37, 38
applying the variable extrapolation MUSCL (monotone upstream-centered schemes
conservation laws) approach [39] and a minmod limiter [40] on the characteristic variak
is used for the space discretization of the convective terms. The four-stage Runge—K
scheme is then applied to the time integration of the resulting system of equations
described in [34].

In the finite volume approximation, the Euler equations (1) are reduced to the sim
form

d
a(viﬁj,kui,j,k) +Qijk=0. (22)

The net fluxQ; j « is written in the same form as Eq. (19), where the Roe flux temsey j

at the interface + % j, kis expressed as a function ldh—l/z,j,k andUiFil/z,j,k, the left and
right cell sides extrapolated values of the state ved{qsi,» j k. To simplify the notation,
the scheme is here described in 1D; the flux tempr,» j « is therefore replaced by the
vectorg; 1,2 (the same letteq is used in both 3D and 1D cases)..1/> is the numerical
approximation of the convective flux vectgs, pu? + p, puh)!, h being the total enthalpy
defined byh =& + p/p. At the interface + % the numerical flux is defined as

1 1
Qv = Q[q(UiLJr%) +q(UiR+;)] - E‘A(Uill%’ UiFi%)‘(UiLJr% - UEL%)’ (23)
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whereA is the Roe matrix constructed from the Roe approximate Riemann solver using
similarity transformation

Al =TIAIT * (24)

= =1 . . . = . = . .
T andT are the right and left eigenvector matricesffwhile |A| is the respective
diagonal matrix of absolute eigenvalues. The Roe matrix satisfies the following proper

. A(U|+1/2v U|+1/2)[U|+1/2 iL+1/2] = Q(UiR+1/2) - Q(Ui|'+1/2);

3
o A(U,U) = A(U) = 88

e A has real eigenvalues with linearly independent eigenvectors.

The TVD conditions are here achieved by means of the minmod limiter. Théli'lgfyz
and rightUR 11,2 state vectors at the cell interfaces are defined as

1+ @ 1—-d

Uh% =U + [ 2 u"ml + u:'m%] (25)
1+d 1—®

UiFi% U - {JFTAU}"“% + TAU""H], (26)

whered = 1/3 resultsin athird-order scheme for the scalar convection equation. The lim
slopesAUlm ™/ and AU]'Tl/2 are calculated applying the minmod limiter to the variation
of the characteristic variablesW over the cell interfaces. TheW are computed from the
difference of the primitive variables over a cell side of unit normal surface vaaser(here
in 3D)
1

AW = Ap — gAp

AW, =11 - Au

AWz =1, Au

1
AWy =n-Au+ —Ap
pC
1
AW5 = —n - Au+ —Ap,
pC

wheren, t;, andt, form an orthonormal basis. The symlzadenotes the speed of sound. Ir
1D, AW is reduced to the first, fourth, and fifth components of the 3D vector. The variati
AW are then limited as

AW™y = L(AW, 3, AW, 1) (27)
AW!T% = L(AW; 1, AW, _y). (28)
The minmod [40] version of the limiting functioh(a, b) is defined as

. a if|a] < |bjandab> 0
memod(& by=<b if |a] > |b] andab > 0 (29)
0 if ab < 0,

where the compression factgrcan be set from 1 to 4.
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The Roe scheme will be tested here using the lower and the upper compression fa
the former version will be denoted as MUSCL1 and the second one as MUSCLA4.

A.3. ENO, MENO, and WENO Schemes

Three essentially non-oscillatory (ENO) schemes are considered here. They are all b
on the flux reconstruction method described in [13]. In the one-dimensional case, for
scalar conservation law,

ou af(u
E—F ax

0, (30)

the second-order finite volume discretization of the convective term can be written as

NN PYOIFS S z
_Ax[f(x+ 2) f(x >}+O(AX), (31)

X 2

whereAx is the mesh size anfi(x + %) the classical flux obtained at the cell interface by
an arithmetic mean. This discrete approximation is equivalent to the product of convolut
of the exact derivation operator with the classical box filter,

1 AX AX d 1 [T
B[f<x+7)—f<x—7ﬂ 55<H/x_% f(g)dg). (32)

The key idea of the ENO schemes is to apply tadiscrete deconvolution operator (denoted
Aq) to achieve higher order of accuracy,

8;5(“) - A:L)([Aq(f<x+A2X>) —Aq(f<x—A2X)>] +0(Ax%)  withg > 2.

(33)

Considering the equivalent differential operator for the box filter, the-{2tjrorder inverse
operator reads

p=m 82p
Pomir =1+ AXZpazpm + O(AX)2™HL,
p=1

The coefficientsay, are constantsp =—1/24, a,=7/5760...). The polynomialAsm,1
can be discretized with=2m+ 1 points.
As given in [18], ther th-order accurate reconstruction can take the form

r-1
Aompa(fjy1) = fAH% = Z(XL,. fior i1k = O (fjkars1, -5 i), (34)
1=0

where thex, | are the reconstruction coefficients, dnig the stencil index selected among
ther candidate stencils. This stencil, call&d is defined as

S = (Xj+|(_r+1, Xj+k—r+2,---,xj+k), k=O,...,r -1 (35)

To minimize numerical over- and undershoots, the reconstruction is performed with
stencil which provides the most regular solution. Whenever the stencil used to evall
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f. +1/2 Is different from the stencil used to evaluaffe,l/2 the order of accuracy decrease:
tor — 1. This drawback is limited in the modified ENO (MENQO) schemes proposed
Shu [41], which selects automatically the most centered stencil in smooth regions.

Another way to increase the accuracy is the WENO approach [19] which consists in
forming linear combinations of threpossibler th-order ENO fluxes. This method increase:
the theoretical order up ta2- 1. The WENO fluxes are written

r—1
i1 = ZwKQ&(fj+kfr+1»--~a fii), (36)
k=0

where the weightgy adapt themselves to the relative smoothness of the flow on e
candidate stencil, in such a way that the stencils which contain a discontinuity are assi
a nearly zero weight.

For the Euler equation, the implementation is performed by applying the deconvolu
to the characteristic variables. The fluxes at the collocation points are evaluated by m
of a Roe solver. Time integration is performed by means of a third-order TVD expli
Runge—Kutta scheme, as recommended in [13].

Using ENO-type schemes, the only source of numerical diffusion is the truncation e
which is dependent on the upwinding of the stencils used to comﬁgtie;z and ﬂ_l/z.
This error denoted as is analysed on a one-dimensional scalar transport equation. -
equivalent partial differential equation associated to a scalar 1D conservation law rea

g 3¢

a + U87 =€, (37)
where¢ is the advected scalar anda uniform advective speed. We consider the pa
(kiett, kright) for the stencil index used to evalualg/dx at the collocation points. The stencil
indexkief; is used to computé, _1/2 andKrignt is used to computéiH/Z. In Table VI, the two
leading terms of the truncation error and the behaviour induced by this error are prov
for r = 3. In this analysisy is assumed to be positive.

The notationp) represents thith derivative of¢ with respect tax. The extension of
this analysis to complex flows is not straightforward, and the only conclusion is that
anti-diffusive behaviour ig priori possible and a dispersive behaviour is often expecte
Nevertheless, in the following computations, the mean behaviour is clearly diffusive.

TABLE VI
ENO Scheme Leading Truncation Error Terms forr =3

(Kieft Kright) €: truncation error Behaviour of the scheme
(0,0) YAAX3PD Anti-diffusive
0, 1) 1/3Ax2¢D — 1/4AX3¢p™ Dispersivet diffusive
0,2) 1/6AX2¢® — 1/6AX3p™ Dispersivet- diffusive
(1,0) —1/3A%x%¢® +5/12Ax3p“W Dispersivet anti-diffusive
1,1 —1/12Ax3¢p™ Diffusive
1,2) —1/6AXx%¢p® Dispersive
(2,0) —1/6Ax2¢p® + 1/2Ax3p@ Dispersivet anti-diffusive
2,1) 1/6Ax2¢p® Dispersive

2,2) 1/12AXx3p@ Anti-diffusive
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B. APPENDIX: SUBGRID SCALE MODELS

The filtered Euler equations, expressed as a function of the filtered variaplps —
{=pu/p, andT, are solved in our computations with SGS models,

at axX ay 0z

U  dF+F 3G+ G dH+H
+ (F+ Sgs)+ G+ SgS)+ H+ SQS):ngs, (38)

where the subgrid fluxessgs Gsgs andHsgsand the turbulent stress contribution in energy
equatiorK sgsare defined as

0 0 0 0
pT11 pT21 pT31 0
Fsgs= pti2 |, ngs = | pt22 |, Hsgs = pt32 |, Ksgs= 0 s
pT13 pT23 pT33 0
Gy Gz s ~{i9; (pij)

(39)

where 1<i, j <3 and the summation convention applies to repeated indices. The sym
7 denotes the turbulent subgrid-scale stress tensor based on the eddy-visggsity

Tij = Uiuj —CliCIj. (40)

In the energy equation, the pressure-velocity and the pressure-dilatation subgrid te
3j (puj — ptj)/(y — 1) and(pdju;j — pa;l;) are here modeled together as a subgrid-scal
heat fluxq based on a turbulent Prandtl numbey frere fixed to 0.5), as proposed by
Vreman in [42],

L= Vsgs ~
(M= 57 41
q]( ) Pr Mg(y -1 9, (41)

Two well-known SGS models have been tested here: the Smagorinsky [26] and the dyneé
[43] eddy-viscosity models.

B.1. Smagorinsky SGS Model

The Smagorinsky eddy-viscosity model [26] formally models only the anisotropic pe
of the subgrid-scale stresg,

_ Sii — — ~ 1 .
PTij — %Pfkk >~ mij = —2pvsgs| §j (0) — éskk(u)sij , (42)
where§; (0) = %(81- ; 4+ 0;0;) is the strain rate and the SGS eddy-viscosifyis given by
vsgs= CZA%|S(@)|  with [S(0)]* = 25, (@)S; (D). (43)
In this work, the Smagorinsky consta@t has been chosen equal to 0.2 as proposed &

Deardorff [29] for isotropic turbulence and the filter widthhas been taken equal to the
cell size.



SHOCK-CAPTURING SCHEMES FOR LES 309

B.2. Dynamic Eddy-Viscosity Model

The dynamic eddy-viscosity model of Germaebal. [43] adopts the eddy-viscosity
formulation Eq. (43) where the square of the Smagorinsky constant is replaced by
dynamic coefficienCy,

Vsgs = Cyq A2|S(C|)|- (44)

This coefficientis dynamically adjusted utilizing information already available at the sm.
est resolved scales. L&t be the grid-filter corresponding to the filter width F(w) = w,

G a test-filter corresponding to the filter width/&, G(w) = w, and finally G the com-
bination of these two filters associated with the filter width, FG(w) = w. In this case
and for Gaussian filters, the constants equal to/5 [44]. Let moreover;; andT;; be
the subgrid-scale stress tensor respectively orfttiter level and on theFG-filter level.
Then, the Germano identity yields

Lij = oTij — puij = (pTi U} — ot O, (45)

whereu; = Z_u\i/ p. The application of this identity to the eddy-viscosity subgrid tensors
the Ffilter levelm;; and on theFG-filter level M;; gives

Lij = —2CqMjj, (46)
where
Mij = ol A)?IS)|S; (@) — [pA%SD)|S; (D] (47)

Following the least-squares approach of Lilly [45], the dynamic con$tans$ extracted
from the six independent equations (46) as

c 1 (Li; Mij)
d=—5
2 (Mjj M)

, (48)
where the numerator and the denominator are averaged over the three spatial homoge
directions in order to prevent numerical instabilities. Classic@llyis set to zero whenever
Eq. (48) returns negative values. However, as one could expect, in the 5 cases analyse
Cgq is never negative. Finally, the dynamic eddy-viscosity model has been implemel
using the grid of cell size\ as the globalF-filter and a coarser grid of cell size/® as the
G-filter.

In Section 3, the indices on the field variables will be omitted for ease of notation.
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